Flaws in plate glass

Y. Bouchareb² R. Randrianomentsoa² N. Hlophe² N. Seeban³ B. Khamisa¹ W. Blomerus¹ E. Maré³

Supervisors: B. Florio⁴, N. Fowkes⁴

¹Stellenbosch University ²African institute for mathematical Sciences

³University of the Witwatersrand ⁴University of Western Australia

Mathematics in Industry Study Group, 2018

Problem description

- Flaws occur as bubbles in the glass and effect optical properties of the glass.
- Bubbles are produced in the furnace (batch or chemical reactions).
- Most bubbles rise to the surface and break.
- If not removed in the furnace they remain in the plate glass.

Our aim is to remove the few remaining small bubbles (0.03 mm), to ensure:

- Quality control and efficiency.
- Environmentally safe.

There are two procedures used to sweep up small bubbles:

- 1. Adding fining agents.
- 2. Introducing larger bubbles.

- Air bubbles (Nitrogen and Oxygen) are carried into the furnace with the batch.
- **2** Chemical equation:

$$3SiO_2 + Na_2CO_3 \Leftrightarrow Na_2O + 3SiO_2 + CO_2$$

O₂ and N₂ relatively insoluble ∴ creates air bubble.
Assumption: only CO₂ in bubble.

Individual bubble behaviour

• Bubble growth due to gas transfer across the surface of bubble.

2 Bubble movement due to buoyancy.

• Henry's law (Thermodynamic equilibrium):

$$c_l = Hp$$

イロト イヨト イヨト イヨト

6/20

Henry's law

Bubble growth

• Laplace equation (Pressure of a bubble):

$$p_b = p_l + \frac{2\gamma}{R}$$

Laplace's law

• Henry's law in a bubble:

$$c_b = H(p_l + \frac{2\gamma}{R})$$

Oritical radius:

$$R_c = \frac{2\gamma}{\frac{c_l}{H} - p_l}$$

8/20

Nucleation is the localized formation of a distinct thermodynamic phase. In a liquid it is the formation of gaseous bubbles.

- Homogeneous nucleation Occurs spontaneously and randomly in the liquid (requires supersaturation).
- e Heterogeneous nucleation Occurs at nucleation site on surfaces contacting the liquid.

・ロット 全部 とう キャット

$$\frac{d}{dt}\left(\frac{4}{3}\pi R^{3}\rho_{b(t)}\right) = k4\pi R^{2}(C_{l} - C_{b(t)}) \tag{1}$$

$$\frac{dR}{dt} = \frac{\frac{\pi}{\rho_0} \left(c_l - H \left(p_l + \frac{\pi}{R} \right) \right)}{1 + \frac{2\epsilon}{3R}} \tag{2}$$

 $\frac{dR}{dt} = 0 \implies R_c = \frac{2\gamma}{\frac{c_l}{H} - p_l}$

うへ (や 11 / 20 • Henry's constant for CO_2 in H_2O at room temperature:

$$K_{H,cp}^0 = \frac{C_{aq}}{P_{gas}}.$$

• Conversion tool:

$$K_{H,cp} = K_{H,cp}^0 \exp\left(C(\frac{1}{T} - \frac{1}{T^0})\right)$$

(日) (四) (종) (종) (종) (종)

12/20

Numerical Solutions

Bubble movement

• Force due to buoyancy:

$$F_{buoyancy} = \frac{4}{3}\pi R^3 \rho_s g$$

2 Stoke's drag force:

$$F_{drag} = 6\pi R\mu \dot{z}$$

• At terminal velocity forces are balanced:

$$\dot{\mathbf{z}} = \frac{2}{9} \frac{R^2(t) \rho_s g}{\mu}$$

• We can show that the growth of the bubble depends on the depth:

$$\frac{dR}{dt} = \frac{\frac{k}{\rho_0} \left(c_l - H \left(p_l(z) + \frac{2\gamma}{R} \right) \right)}{1 + \frac{2\epsilon}{3R}}$$

Solutions

Observations and convection flow

- R_c at the top: $3.7 \times 10^{-7} m$
- R_c at the bottom: $4.2 \times 10^{-7} m$
- Considering the convection flow
- Convection flow speed:

$$v \sim 3 \times 10^{-4} m/s$$

16/20

• Using:

$$\dot{\mathbf{z}} = \frac{2}{9} \frac{R^2(t)\rho_s g}{\mu}$$

Procedures to sweep up small bubbles

Fining agents

- Fining agents are chemicals that remove bubbles from molten glass.
- Arsenic oxide:
 - One of most efficient chemical fining agents
 - Highly toxic
 - Adding alkali and alkaline earth oxides makes it less volatile
- Less noxious compounds in use:
 - Sodium chloride
 - Sodium sulphate
 - Sodium nitrate

Procedures to sweep up small bubbles

Introducing more bubbles

- Device that mechanically inserts bubbles into the molten glass
- **2** Experiment conducted by engineers

- Investigated how a bubble grows and moves in molten glass.
- 2 Critical range gives insight to problem bubbles.
- O Preliminary investigation to remove bubbles.
- Inture work
 - Two gas model
 - More accurate Henry's constant

